二次型的定义及其矩阵表达式

nn元变量x1,x2,,xnx_{1}, x_{2}, \cdots, x_{n}的二次齐次多项式

\begin{align}\begin{array}{r} f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+\cdots+2 a_{1 n} x_{1} x_{n} \\ +a_{22} x_{2}^{2}+\cdots+2 a_{2 n} x_{2} x_{n} \\ +\cdots \\ +a_{n n} x_{n}^{2} \end{array}\end{align}

称为nn元二次型,简称二次型。考研只研究系数aijR(ij;i,j=1,2,,n)a_{i j} \in \mathbf{R}(i \leqslant j ; i, j=1,2, \cdots, n)的情况,故称此二次型ff为实二次型.

例题

写出三元二次型f(x1,x2,x3)=2x12+2x22+2x322x1x22x2x3+2x1x3f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}+2 x_{1} x_{3}的二次型矩阵A\boldsymbol{A}

将二次型表示成矩阵形式是基本要求,方法:A\boldsymbol{A}的主对角线元素aiia_{i i}是平方项xi2x_{i}^{2}的系数,aija_{i j}是混合项xixjx_{i} x_{j}的系数的12\frac{1}{2},或利用矩阵乘法

f(x1,x2,x3)=2x12+2x22+2x322x1x22x2x3+2x1x3=2x12x1x2+x1x3x2x1+2x22x2x3+x3x1x3x2+2x32=x1(2x1x2+x3)+x2(x1+2x2x3)+x3(x1x2+2x3)=[x1,x2,x3][2x1x2+x3x1+2x2x3x1x2+2x3]=[x1,x2,x3][211121112][x1x2x3]\begin{aligned} f\left(x_{1}, x_{2}, x_{3}\right) & =2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}+2 x_{1} x_{3} \\ & =2 x_{1}^{2}-x_{1} x_{2}+x_{1} x_{3}-x_{2} x_{1}+2 x_{2}^{2}-x_{2} x_{3}+x_{3} x_{1}-x_{3} x_{2}+2 x_{3}^{2} \\ & =x_{1}\left(2 x_{1}-x_{2}+x_{3}\right)+x_{2}\left(-x_{1}+2 x_{2}-x_{3}\right)+x_{3}\left(x_{1}-x_{2}+2 x_{3}\right) \\ & =\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{c} 2 x_{1}-x_{2}+x_{3} \\ -x_{1}+2 x_{2}-x_{3} \\ x_{1}-x_{2}+2 x_{3} \end{array}\right]=\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{ccc} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right]\left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right] \end{aligned}

\begin{align}\boldsymbol{A}=\left[\begin{array}{ccc} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right]\end{align}

系数矩阵A\boldsymbol{A}的秩称为二次型f(x)f(\boldsymbol{x})的秩。比如注例中,A=[211121112]\boldsymbol{A}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right],其秩r(A)=3r(\boldsymbol{A})=3,故其对应的二次型的秩也是33

PS:主要的解法就是,写一个这个,然后填中间那个矩阵的值,[x1,x2,x3][][x1x2x3]\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{ccc} & & \\ & & \\ & & \end{array}\right]\left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]

二次型的合同标准形、规范形

若二次型中只含有平方项,没有交叉项 (即所有交叉项的系数全为零),即形如下列二次型称为标准形

\begin{align}d_{1} x_{1}^{2}+d_{2} x_{2}^{2}+\cdots+d_{n} x_{n}^{2}\end{align}

若标准形中,系数di(i=1,2,,n)d_{i}(i=1,2, \cdots, n)仅为1,1,01,-1,0,即形如x12++xp2xp+12xp+q2x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2}的二次型称为规范形

若二次型f(x)=xTAxf(\boldsymbol{x})=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}合同于标准形d1x12+d2x22++dnxn2d_{1} x_{1}^{2}+d_{2} x_{2}^{2}+\cdots+d_{n} x_{n}^{2}(或合同于规范形 x12++xp2xp+12xp+q2x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots- x_{p+q}^{2}),则称d1x12+d2x22++dnxn2d_{1} x_{1}^{2}+d_{2} x_{2}^{2}+\cdots+d_{n} x_{n}^{2}f(x)f(\boldsymbol{x})合同标准形(则称x12++xp2xp+12xp+q2x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2}f(x)f(\boldsymbol{x})合同规范形

任何二次型均可通过配方法(作可逆线性变换)化成标准形及规范形,用矩阵语言表述:任何实对称矩阵A\boldsymbol{A},必存在可逆矩阵C\boldsymbol{C},使得CTAC=Λ\boldsymbol{C}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{C}=\boldsymbol{\Lambda},其中
![image-20240304195734784](/Users/ascotbe/Library/Application Support/typora-user-images/image-20240304195734784.png)

例题

惯性定理

无论选取什么样的可逆线性变换,将二次型化成标准形或规范形,其正项个数pp,负项个数qq都是不变的,pp称为正惯性指数qq称为负惯性指数

  • 若二次型的秩为rr,则r=p+qr=p+q,可逆线性变换不改变正、负惯性指数
  • 两个二次型(或实对称矩阵)合同的充要条件是有相同的正、负惯性指数,或有相同的秩及正(或负)惯性指数

例题

正定二次型及其判别

定义

nn元二次型f(x1,x2,,xn)=xTAxf\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}。若对任意的x=[x1,x2,,xn]T0\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{\mathrm{T}} \neq \boldsymbol{0},均有xTAx>0\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}>0,则称ff正定二次型,称二次型的对应矩阵A\boldsymbol{A}正定矩阵

二次型正定的充要条件

\begin{align}n元二次型f=&\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}正定\Leftrightarrow对任意\boldsymbol{x} \neq \boldsymbol{0} , 有 \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}>0 (定义) \\&\Leftrightarrow f 的正惯性指数 p=n \\&\Leftrightarrow 存在可逆矩阵 \boldsymbol{D} , 使 \boldsymbol{A}=\boldsymbol{D}^{\mathrm{T}} \boldsymbol{D} \\&\Leftrightarrow \boldsymbol{A} \simeq \boldsymbol{E} \\&\Leftrightarrow \boldsymbol{A} 的特征值 \lambda_{i}>0(i=1,2, \cdots, n) \\&\Leftrightarrow \boldsymbol{A} 的全部顺序主子式均大于 0\end{align}

主子式

A=(aij)n×n\boldsymbol{A}=\left(a_{i j}\right)_{n \times n},则

\begin{align}\left|\boldsymbol{A}_{k}\right|=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 k} \\ a_{21} & a_{22} & \cdots & a_{2 k} \\ \vdots & \vdots & & \vdots \\ a_{k 1} & a_{k 2} & \cdots & a_{k k} \end{array}\right|\end{align}

称为nn阶矩阵A\boldsymbol{A}kk阶顺序(或左上角)主子式。当kk1,2,,n1,2, \cdots, n时,就得到A\boldsymbol{A}nn个顺序主子式

例题