8e46afc9cf60064d25e129aadf91f678

隐函数的类型

一个方程情形

二元方程

设函数F(x,y)F(x,y)在点P(x0,y0)P\left(x_{0},y_{0}\right)的某一领域内具有连续偏导数,且

  • F(x0,y0)=0F(x_{0},y_{0})=0

  • Fy(x0,y0)0F_{y}\left(x_{0},y_{0}\right)\neq0

    注:Fy0y=y(x)F_y\neq0\Longrightarrow y=y(x)相应的Fx0x=x(y)F_x\neq0\Longrightarrow x=x(y)

则方程F(x,y)=0F(x,y)=0在点(x0,y0)\left(x_{0},y_{0}\right)的某一领域内恒能唯一确定

一个连续且有连续偏导的函数y=y(x)y=y(x),它满足y0=y(x0)y_{0}=y\left(x_{0}\right),且

\begin{align}\frac{dy}{dx}=-\frac{F_{x}}{F_{y}}\end{align}

Fx,FyF_x,F_y指的是二元函数F(x,y)F(x,y)x,yx,y的偏导数

下载

例题

三元函数

设函数F(x,y,z)F(x,y,z)在点P(x0,y0,z0)P\left(x_{0},y_{0},z_{0}\right)的某一领域内具有连缘偏导数,且

  • F(x0,y0,z0)=0F(x_{0},y_{0},z_{0})=0

  • Fz(x0,y0,z0)0F_{z}(x_{0},y_{0},z_{0})\neq0

    注:Fz0z=z(x,y)F_z\neq0\Longrightarrow z=z(x,y)相应的Fx0x=x(y,z)F_x\neq0\Longrightarrow x=x(y,z)同理Fy0y=y(z,x)F_y\neq0\Longrightarrow y=y(z,x)

则方程F(x,y,z)=0F(x,y,z)=0在点PP的某一领域中恒能唯一确定一个连续且具有连续偏导数的函数z=z(x,y)z=z(x,y),满足z0=z(x0,y0)z_{0}=z(x_{0},y_{0})

\begin{align}&\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}\\&\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}\end{align}

例题

已知设2+y2+z24z=0^{2}+y^{2}+z^{2}-4z=0,求2zx2\frac{\partial^{2}z}{\partial x^{2}}

F(x,y,z)=x2+y2+z24zF(x,y,z)=x^{2}+y^{2}+z^{2}-4z,则Fx=2x,Fy=2y,Fz=2z4F_{x}=2x,F_{y}=2y,F_{z}=2z-4。当z2z\neq2时,应得

\begin{align}\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=\frac{x}{2-z}\end{align}

再一次对xx求偏导数(需要把zz看做z(x,y)z(x,y),不要把zz看做常数),得

\begin{align}\frac{\partial^{2}z}{\partial x^{2}}=\frac{(2-z)+x\frac{\partial z}{\partial x}}{(2-z)^{2}}=\frac{(2-z)+x\left(\frac{x}{2-z}\right)}{(2-z)^{2}}=\frac{(2-z)^{2}+x^{2}}{(2-z)^{3}}\end{align}

方程组情形

四元方程组

F(x,y,u,v),G(x,y,u,v)F(x,y,u,v),G(x,y,u,v)在点P(x0,y0,u0,v0)P(x_{0},y_{0},u_{0},v_{0})的某一领域内具有对各个变量的连续偏导数且

  • F(x0,y0,u0,v0)=0,G(x0,y0,u0,v0)=0F\left(x_{0},y_{0},u_{0},v_{0}\right)=0,G\left(x_{0},y_{0},u_{0},v_{0}\right)=0

  • F,GF,Gu,vu,v的雅可比(Jacobi)行列式在PP处不为0

    \begin{align}J=\frac{\partial(F,G)}{\partial(u,v)}=\left|\begin{array}{ll}F_{u}&F_{v}\\G_{u}&G_v\end{array}\right|\neq0\end{align}

则方程组F(x,y,u,v)=0,G(x,y,u,v)=0F(x,y,u,v)=0,G(x,y,u,v)=0PP的某领域内能唯一确定一组连续且有连续偏导数的函数u=u(x,y),v=v(x,y)u=u(x,y),v=v(x,y),满足u0=u(x0,y0),v0=v(x0,y0)u_{0}=u\left(x_{0},y_{0}\right),v_{0}=v\left(x_{0},y_{0}\right)

\begin{align}&\frac{\partial u}{\partial x}=-\frac{1}{J} \frac{\partial(F, G)}{\partial(x, v)}=-\frac{\left|\begin{array}{ll}F_{x} & F_{v} \\G_{x}&G_{v}\end{array}\right|}{\left|\begin{array}{cc}F_{u} & F_{v} \\G_{u} & G_{v}\end{array}\right|}\\&\frac{\partial v}{\partial x}=-\frac{1}{J} \frac{\partial(F, G)}{\partial(u, x)} \\&\frac{\partial u}{\partial y}=-\frac{1}{J} \frac{\partial(F, G)}{\partial(y, v)}\\& \frac{\partial v}{\partial y}=-\frac{1}{J} \frac{\partial(F, G)}{\partial(u, y)} \end{align}

例题

xuyv=0,yu+xv=1xu-yv=0,yu+xv=1,求ux,uy,vx\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial v}{\partial x}vy\frac{\partial v}{\partial y}

将所给方程的两边对xx求导并移项,得

\begin{align}\{\begin{array}{l} x \frac{\partial u}{\partial x}-y \frac{\partial v}{\partial x}=-u \\ y \frac{\partial u}{\partial x}+x \frac{\partial v}{\partial x}=-v \end{array}\end{align}

J=xyyx=x2+y20J=\left|\begin{array}{rr}x & -y \\ y & x\end{array}\right|=x^{2}+y^{2} \neq 0的条件下

\begin{align}\begin{array}{l} \frac{\partial u}{\partial x}=\frac{\left|\begin{array}{rr} -u & -y \\ -v & x \end{array}\right|}{\left|\begin{array}{rr} x & -y \\ y & x \end{array}\right|}=-\frac{x u+y v}{x^{2}+y^{2}} \\ \frac{\partial v}{\partial x}=\frac{\left|\begin{array}{rr} x & -u \\ y & -v \end{array}\right|}{\left|\begin{array}{rr} x & -y \\ y & x \end{array}\right|}=\frac{y u-x v}{x^{2}+y^{2}} \end{array}\end{align}

将所给方程的两边对yy求导。用同样方法在J=x2+y20J=x^{2}+y^{2} \neq 0的条件下可得

\begin{align}\frac{\partial u}{\partial y}=\frac{x v-y u}{x^{2}+y^{2}}, \quad \frac{\partial v}{\partial y}=-\frac{x u+y v}{x^{2}+y^{2}}\end{align}