f7c1af15eca6ff27911d82bb9cb5fd5e

前置知识

偏导数

函数沿坐标轴方向的变化率

\begin{align} f_{x}\left(x_{0}, y_{0}\right) & = \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} \\ f_{y}\left(x_{0}, y_{0}\right) & = \lim _{\Delta y \rightarrow 0} \frac{f\left(x_{0}, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)}{\Delta y} \end{align}

方向余弦

l=(a,b)\vec{l}=(a, b)

单位化

\begin{align} \vec{l} & =\frac{1}{\sqrt{a^{2}+b^{2}}}(a, b) \\ &= \left(\frac{a}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}}}\right) \\ & =(\cos \alpha, \cos \beta) \end{align}

方向导数

对于二元函数(平面)

llxOyxOy平面上以P0(x0,y0)P_{0}\left(x_{0},y_{0}\right)为始点的一条射线,el=(cosα,cosβ)\boldsymbol{e}_{l}=(\cos\alpha,\cos\beta)是与ll同方向的单位向量,射线l\vec{l}的参数方程为

\begin{align}\left\{\begin{array}{l}x=x_{0}+t\cos\alpha\\y=y_{0}+t\cos\beta\end{array}(t\geqslant0)\right.\end{align}

定理:如果函数f(x,y)f(x,y)在点P0(x0,y0)P_{0}\left(x_{0},y_{0}\right)可微分,那么函数在该点沿任一方向l的方向导数存在,且有

\begin{align}\left.\frac{\partial f}{\partial l}\right|_{\left(x_{0},y_{0}\right)}=f_{x}\left(x_{0},y_{0}\right)\cos\alpha+f_{y}\left(x_{0},y_{0}\right)\cos\beta\end{align}

其中cosα\cos\alphacosβ\cos\beta是方向l\vec{l}的方向余弦,公式如下

\begin{align} \vec{l} & =\frac{1}{\sqrt{a^{2}+b^{2}}}(a, b) \\ &= \left(\frac{a}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}}}\right) \\ & =(\cos \alpha, \cos \beta) \end{align}

如下图所示,点pp位置处红色箭头方向的方向导数为黑色切线的斜率,来自链接Directional Derivative 文件备份

image-20230830152016791

例题

求函数z=xe2yz=x\mathrm{e}^{2y}在点P(1,0)P(1,0)处沿从点P(1,0)P(1,0)到点Q(2,1)Q(2,-1)的方向的方向导数

这里方向l\vec{l}即向量PQ=(1,1)\overrightarrow{PQ}=(1,-1)的方向,与l\vec{l}同向的单位向量为el=(12,12)\vec{\boldsymbol{e}}_{l}=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)

因为函数可微分

\begin{align}\left.\frac{\partial z}{\partial x}\right|_{(1,0)}=\left.\mathrm{e}^{2y}\right|_{(1,0)}=1,\left.\frac{\partial z}{\partial y}\right|_{(1,0)}=\left.2x\mathrm{e}^{2y}\right|_{(1,0)}=2\end{align}

故所求方向导数为

\begin{align}\left.\frac{\partial z}{\partial l}\right|_{(1,0)}=1\cdot\frac{1}{\sqrt{2}}+2\cdot\left(-\frac{1}{\sqrt{2}}\right)=-\frac{\sqrt{2}}{2}\end{align}


对于三元函数(空间)

对于三元函数f(x,y,z)f(x,y,z)来说,它在空间一点P0(x0,y0,z0)P_{0}\left(x_{0},y_{0},z_{0}\right)沿方向el=(cosα,cosβ,cosγ)\vec{\boldsymbol{e}}_{l}=(\cos\alpha,\cos\beta,\cos\gamma)的方向导数为

\begin{align}\left.\frac{\partial f}{\partial l}\right|_{\left(x_{0},y_{0},z_{0}\right)}=\lim_{t\rightarrow0^{+}}\frac{f\left(x_{0}+t\cos\alpha,y_{0}+t\cos\beta,z_{0}+t\cos\gamma\right)-f\left(x_{0},y_{0},z_{0}\right)}{t}\end{align}

同样可以证明:如果函数f(x,y,z)f(x,y,z)在点(x0,y0,z0)\left(x_{0},y_{0},z_{0}\right)可微分,那么函数在该点沿着方向el=(cosα,cosβ,cosγ)\vec{\boldsymbol{e}}_{l}=(\cos\alpha,\cos\beta,\cos\gamma)的方向导数为

\begin{align}\left.\frac{\partial f}{\partial l}\right|_{\left(x_{0},y_{0},z_{0}\right)}=f_{x}\left(x_{0},y_{0},z_{0}\right)\cos\alpha+f_{y}\left(x_{0},y_{0},z_{0}\right)\cos\beta+f_{z}\left(x_{0},y_{0},z_{0}\right)\cos\gamma\end{align}

例题

f(x,y,z)=xy+yz+zxf(x,y,z)=xy+yz+zx在点(1,1,2)(1,1,2)沿方向ll的方向导数,其中l\vec{l}的方向角分别为60,45,6060^{\circ},45^{\circ},60^{\circ}

解与l\vec{l}同向的单位向量

\begin{align}\vec{\boldsymbol{e}}_{l}=\left(\cos60^{\circ},\cos45^{\circ},\cos60^{\circ}\right)=\left(\frac{1}{2},\frac{\sqrt{2}}{2},\frac{1}{2}\right)\end{align}

因为函数可微分,且

\begin{align} f_{x}(1,1,2)=\left.(y+z)\right|_{(1,1,2)}=3\\ f_{y}(1,1,2)=\left.(x+z)\right|_{(1,1,2)}=3\\ f_{z}(1,1,2)=\left.(y+x)\right|_{(1,1,2)}=2 \end{align}

由公式得

\begin{align}\left.\frac{\partial f}{\partial l}\right|_{(1,1,2)}=3\cdot\frac{1}{2}+3\cdot\frac{\sqrt{2}}{2}+2\cdot\frac{1}{2}=\frac{1}{2}(5+3\sqrt{2})\end{align}

梯度

在二元函数的情形,设函数f(x,y)f(x,y)在平面区域DD内具有一阶连续偏导数,则对于每一点P0(x0,y0)DP_{0}\left(x_{0},y_{0}\right)\in D,都可定出一个向量

\begin{align}f_{x}\left(x_{0},y_{0}\right)\vec{\boldsymbol i} +f_{y}\left(x_{0},y_{0}\right)\vec{\boldsymbol{j}}\end{align}

这向量称为函数f(x,y)f(x,y)在点P0(x0,y0)P_{0}\left(x_{0},y_{0}\right)梯度,记作gradf(x0,y0)\operatorname{grad}f\left(x_{0},y_{0}\right)f(x0,y0)\nabla f\left(x_{0},y_{0}\right)

\begin{align}\operatorname{grad}f\left(x_{0},y_{0}\right)=\nabla f\left(x_{0},y_{0}\right)=f_{x}\left(x_{0},y_{0}\right)\vec{\boldsymbol{i}}+f_{y}\left(x_{0},y_{0}\right)\vec{\boldsymbol{j}}\end{align}

如果函数f(x,y)f(x,y)在点P0(x0,y0)P_{0}\left(x_{0},y_{0}\right)可微分,el=(cosα,cosβ)\vec{\boldsymbol{e}}_{l}=(\cos\alpha,\cos\beta)是与方向l同向的单位向量,那么

\begin{align} \left.\frac{\partial f}{\partial l}\right|_{\left(x_{0},y_{0}\right)}&=f_{x}\left(x_{0},y_{0}\right)\cos\alpha+f_{y}\left(x_{0},y_{0}\right)\cos\beta\\ &=\operatorname{grad}f\left(x_{0},y_{0}\right)\cdot\vec{\boldsymbol{e}}_{l}=\left|\operatorname{grad}f\left(x_{0},y_{0}\right)\right|\cos\theta \end{align}

其中θ=(gradf(x0,y0),el)\theta=\left(\operatorname{grad}f\left(x_{0},y_{0}\right),\vec{\boldsymbol{e}}_{l}\right)的夹角

(1)当θ=0\theta=0,即方向et\vec{\boldsymbol{e}}_{t}与梯度gradf(x0,y0)\operatorname{grad}f\left(x_{0},y_{0}\right)的方向相同时,函数f(x,y)f(x,y)增加最快。此时,函数在这个方向的方向导数达到最大值,这个最大值就是梯度gradf(x0,y0)\operatorname{grad}f\left(x_{0},y_{0}\right)的模,即

\begin{align}\left.\frac{\partial f}{\partial l}\right|_{\left(x_{0},y_{0}\right)}=\left|\operatorname{grad}f\left(x_{0},y_{0}\right)\right|\end{align}

这个结果也表示:函数f(x,y)f(x,y)在一点的梯度gradf\operatorname{grad}f是这样一个向量,它的方向是函数在这点的方向导数取得最大值的方向,它的模就等于方向导数的最大值

(2)当θ=π\theta=\pi,即方向et\vec{\boldsymbol{e}}_{t}与梯度gradf(x0,y0)\operatorname{grad}f\left(x_{0},y_{0}\right)的方向相反时,函数f(x,y)f(x,y)减少最快,函数在这个方向的方向导数达到最小值,即

\begin{align}\left.\frac{\partial f}{\partial l}\right|_{\left(x_{0},y_{0}\right)}=-\left|\operatorname{grad}f\left(x_{0},y_{0}\right)\right|\end{align}

(3)当θ=π2\theta=\frac{\pi}{2},即方向et\vec{\boldsymbol{e}}_{t}与梯度gradf(x0,y0)\operatorname{grad}f\left(x_{0},y_{0}\right)的方向正交时,函数的变化率为零,即

\begin{align}\left.\frac{\partial f}{\partial l}\right|_{\left(x_{0},y_{0}\right)}=\left|\operatorname{grad}f\left(x_{0},y_{0}\right)\right|\cos\theta=0\end{align}

3

例题

grad1x2+y2\operatorname{grad}\frac{1}{x^{2}+y^{2}}

解这里f(x,y)=1x2+y2f(x,y)=\frac{1}{x^{2}+y^{2}}因为

\begin{align}\frac{\partial f}{\partial x}=-\frac{2x}{\left(x^{2}+y^{2}\right)^{2}},\frac{\partial f}{\partial y}=-\frac{2y}{\left(x^{2}+y^{2}\right)^{2}}\end{align}

所以

\begin{align}\operatorname{grad}\frac{1}{x^{2}+y^{2}}=-\frac{2x}{\left(x^{2}+y^{2}\right)^{2}}\vec{\boldsymbol{i}}-\frac{2y}{\left(x^{2}+y^{2}\right)^{2}}\vec{\boldsymbol{j}}\end{align}


f(x,y)=12(x2+y2),P0(1,1)f(x,y)=\frac{1}{2}\left(x^{2}+y^{2}\right),P_{0}(1,1),求
(1)f(x,y)f(x,y)P0P_{0}处增加最快的方向以及f(x,y)f(x,y)沿这个方向的方向导数
(2)f(x,y)f(x,y)P0P_{0}处减少最快的方向以及f(x,y)f(x,y)沿这个方向的方向导数
(3)f(x,y)f(x,y)P0P_{0}处的变化率为零的方向

(1)f(x,y)f(x,y)P0P_{0}处沿f(1,1)\nabla f(1,1)的方向增加最快

\begin{align}\nabla f(1,1)=\left.(x \vec{\boldsymbol{i}}+y\vec{\boldsymbol{j}})\right|_{(1,1)}=\vec{\boldsymbol{i}}+\vec{\boldsymbol{j}}\end{align}

故所求方向可取为

\begin{align}\boldsymbol{n}=\frac{\nabla f(1,1)}{|\nabla f(1,1)|}=\frac{1}{\sqrt{2}}\vec{\boldsymbol{i}}+\frac{1}{\sqrt{2}}\vec{\boldsymbol{j}}\end{align}

方向导数为

\begin{align}\left.\frac{\partial f}{\partial n}\right|_{(1,1)}=|\nabla f(1,1)|=\sqrt{2}\end{align}

(2)f(x,y)f(x,y)P0P_{0}处沿f(1,1)-\nabla f(1,1)的方向减少最快,这方向可取为

\begin{align}n_{1}=-n=-\frac{1}{\sqrt{2}}\vec{\boldsymbol{i}}-\frac{1}{\sqrt{2}}\vec{\boldsymbol{j}}\end{align}

方向导数为

\begin{align}\left.\frac{\partial f}{\partial n_{1}}\right|_{(1,1)}=-|\nabla f(1,1)|=-\sqrt{2}\end{align}

(3)f(x,y)f(x,y)P0P_{0}处沿垂直于f(1,1)\nabla f(1,1)的方向变化率为零,这方向是

\begin{align}&\boldsymbol{n}_{2}=-\frac{1}{\sqrt{2}}\vec{\boldsymbol{i}}+\frac{1}{\sqrt{2}}\vec{\boldsymbol{j}}\\&\boldsymbol{n}_{3}=\frac{1}{\sqrt{2}}\vec{\boldsymbol{i}}-\frac{1}{\sqrt{2}}\vec{\boldsymbol{j}}\end{align}


f(x,y,z)=x3xy2z,P0(1,1,0)f(x,y,z)=x^{3}-xy^{2}-z,P_{0}(1,1,0),问f(x,y,z)f(x,y,z)P0P_{0}处沿什么方向变化最快,在这个方向的变化率是多少?

f=fxi+fyj+fzk=(3x2y2)i2xyjk,f(1,1,0)=2i2jk\nabla f=f_{x}\vec{\boldsymbol{i}}+f_{y}\vec{\boldsymbol{j}}+f_{z}\boldsymbol{k}=\left(3x^{2}-y^{2}\right)\vec{\boldsymbol{i}}-2xy\vec{\boldsymbol{j}}-\boldsymbol{k},\nabla f(1,1,0)=2\vec{\boldsymbol{i}}-2\vec{\boldsymbol{j}}-\boldsymbol{k}
f(x,y,z)f(x,y,z)P0P_{0}处沿f(1,1,0)\nabla f(1,1,0)的方向增加最快,沿f(1,1,0)-\nabla f(1,1,0)的方向减少最快,在这两个方向的变化率分别是

\begin{align} |\nabla f(1,1,0)|=\sqrt{2^{2}+(-2)^{2}+1}=3\\ -|\nabla f(1,1,0)|=-3 \end{align}

多元函数的极致与最值

无约束极值

定义 设函数$z=f(x,y)$在点$P\left(x_{0},y_{0}\right)$的某邻域内有定义,若对该邻域内任意的点$P(x,y)$均有

\begin{align}f(x,y)\leqslant f\left(x_{0},y_{0}\right)\quad or\quad f(x,y)\geqslant f\left(x_{0},y_{0}\right)\end{align}

则称(x0,y0)\left(x_{0},y_{0}\right)f(x,y)f(x,y)的极大值点(或极小值点);称f(x0,y0)f\left(x_{0},y_{0}\right)f(x,y)f(x,y)的极大值(或极小值)。极大值点和极小值点统称为极值点,极大值和极小值统称为极值

2

二阶导数的正负可以决定函数凹凸性,f(x)>0f''(x) > 0说明函数f(x)f(x)是凹的(绿色的图),f(x)<0f''(x) < 0说明函数f(x)f(x)是凸的(红色的)。如下图所示。

凹的

凸的

定义 极值的必要条件 设$z=f(x,y)$在点$(x_{0},y_{0})$存在偏导数,且$(x_{0},y_{0})$为$f(x,y)$的极值点,则

\begin{align}f_{x}^{\prime}\left(x_{0},y_{0}\right)=0,f_{y}^{\prime}\left(x_{0},y_{0}\right)=0\end{align}

定义 极值的充分条件 设$z=f(x,y)$在点$P_{0}\left(x_{0},y_{0}\right)$的某邻域内有二阶连续偏导数,又$f_{x}^{\prime}(x_{0},y_{0})=0,f_{y}^{\prime}(x_{0},y_{0})=0$。记

\begin{align}A=f_{xx}^{\prime\prime}\left(x_{0},y_{0}\right),\quad B=f_{xy}^{\prime\prime}\left(x_{0},y_{0}\right),\quad C=f_{yy}^{\prime\prime}\left(x_{0},y_{0}\right)\end{align}

则有下述结论:

  1. ACB2>0AC-B^{2}>0,则(x0,y0)\left(x_{0},y_{0}\right)f(x,y)f(x,y)的极值点。
    1. A<0A<0,则(x0,y0)\left(x_{0},y_{0}\right)f(x,y)f(x,y)的极大值点。
    2. A>0A>0,则(x0,y0)\left(x_{0},y_{0}\right)f(x,y)f(x,y)的极小值点。
  2. ACB2<0AC-B^{2}<0,则(x0,y0)\left(x_{0},y_{0}\right)不为f(x,y)f(x,y)的极值点。
  3. ACB2=0AC-B^{2}=0,则(x0,y0)\left(x_{0},y_{0}\right)可能为f(x,y)f(x,y)的极值点,也可能不为f(x,y)f(x,y)的极值点(此时,一般用定义判定)。

求具有二阶连续偏导数二元函数z=f(x,y)z=f(x,y)极值的一般步骤为:

  1. 求出f(x,y)f(x,y)的驻点P1,,PkP_{1},\cdots,P_{k}
  2. 利用极值的充分条件判定驻点PiP_{i}是否为极值点。