原函数与不定积分

定理就是一句话:连续函数一定有原函数

\begin{align} \int f(x)\mathrm{~d}x \end{align}

符号\int成为积分号f(x)f(x)称为被积函数f(x) dxf(x)\mathrm{~d}x称为被积表达式xx称为积分变量

基本积分表

表格内容
k dx=kx+C\int k \mathrm{~d} x=k x+C \quad
xμ dx=xμ+1μ+1+C(μ1)\int x^{\mu} \mathrm{~d} x=\frac{x^{\mu+1}}{\mu+1}+C \quad(\mu \neq-1)
 dxx=lnx+C\int \frac{\mathrm{~d} x}{x}=\ln \mid x\mid+C
 dx1+x2=arctanx+C\int \frac{\mathrm{~d} x}{1+x^{2}}=\arctan x+C
 dx1x2=arcsinx+C\int \frac{\mathrm{~d} x}{\sqrt{1-x^{2}}}=\arcsin x+C
cosx dx=sinx+C\int \cos x \mathrm{~d} x=\sin x+C
sinx dx=cosx+C\int \sin x \mathrm{~d} x=-\cos x+C
 dxcos2x=sec2x dx=tanx+C\int \frac{\mathrm{~d} x}{\cos ^{2} x}=\int \sec ^{2} x \mathrm{~d} x=\tan x+C
 dxsin2x=csc2x dx=cotx+C\int \frac{\mathrm{~d} x}{\sin ^{2} x}=\int \csc ^{2} x \mathrm{~d} x=-\cot x+C
secxtanx dx=secx+C\int \sec x \tan x \mathrm{~d} x=\sec x+C
cscxcotx dx=cscx+C\int \csc x \cot x \mathrm{~d} x=-\csc x+C
ex dx=ex+C\int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}+C
ax dx=axlna+C\int a^{x} \mathrm{~d} x=\frac{a^x}{\ln a}+C

符号解释

高阶平方根

\begin{align}{\sqrt[{3}]{x}}&=x^{1/3}\\{\sqrt[{4}]{x}}&=x^{1/4}\\&\vdots \\{\sqrt[{n}]{x}}&=x^{1/n}\end{align}

直接积分法

利用基本积分公式+积分性质

例题:1x dx\int \frac{1}{\sqrt{x}} \mathrm{~d} x

解:

\begin{align} &\int \frac{1}{\sqrt{x}} \mathrm{~d} x \\=& \int x^{-\frac{1}{2}} \mathrm{~d} x \\=&\frac{1}{-\frac{1}{2}+1}x^{-\frac{1}{2}+1}+C\\=&2\sqrt{x}+C\end{align}


例题:1xx3 dx\int \frac{1}{x\cdot \sqrt[3]{x}} \mathrm{~d} x

解:

\begin{align}&\int \frac{1}{x\cdot \sqrt[3]{x}} \mathrm{~d} x \\=&\int x^{-\frac{4}{3}}\mathrm{~d} x\\=&\frac{1}{-\frac{4}{3}+1}x^{-\frac{4}{3}+1}+C\\=&-3x^{-\frac{1}{3}}+C\end{align}


例题:x(x25) dx\int {\sqrt{x}\cdot(x^2-5)}\mathrm{~d} x

解:

\begin{align}&\int {\sqrt{x}\cdot(x^2-5)}\mathrm{~d} x \\=& \int (x^{\frac{5}{2}}-5x^{\frac{1}{2}})\mathrm{~d} x \\=&\int x^{\frac{5}{2}}\mathrm{~d} x-5\int x^{\frac{1}{2}}\mathrm{~d} x \\=&\frac{1}{\frac{5}{2}+1}x^{\frac{5}{2}+1}-5\cdot \frac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1}+C \\=&\frac{2}{7}x^{\frac{7}{2}}-\frac{10}{3}x^{\frac{3}{2}}+C\end{align}


例题:(x1)3x2 dx\int\frac{(x-1)^3}{x^2}\mathrm{~d}x

解:由于(ab)3=a33a2b+3ab2b3(a-b)^3=a^3-3a^2b+3ab^2-b^3,所有下面公式可以转换成

\begin{align} & \int\frac{(x-1)^3}{x^2}\mathrm{~d}x \\=& \int\frac{x^3-3x^2+3x-1}{x^2}\mathrm{~d}x\\=&\int x\mathrm{~d}x-3\int \mathrm{~d}x+3\int \frac{1}{x}\mathrm{~d}x-\int \frac{1}{x^2}\mathrm{~d}x\\=&\frac{x^2}{2}-3x+3\ln \mid x\mid+\frac{1}{x}+C\end{align}


例题:(ex3sinx+10x) dx\int(e^x-3\sin x+10^x)\mathrm{~d}x

解:

\begin{align} &\int(e^x-3\sin x+10^x)\mathrm{~d}x \\=&\int e^x\mathrm{~d}x-3\int \sin x \mathrm{~d}x+\int 10^x \mathrm{~d}x\\=&e^x+3\cos x +\frac{10^x}{\ln 10}+C \end{align}


例题:2xex dx\int 2^xe^x\mathrm{~d}x

解:

\begin{align} &\int 2^xe^x\mathrm{~d}x\\=&\int(2e)^x\mathrm{~d}x \\=&\frac{(2e)^x}{\ln2e} +C\end{align}


例题:1+x+x2x(1+x2) dx\int \frac{1+x+x^2}{x(1+x^2)}\mathrm{~d}x

解:

\begin{align} & \int \frac{1+x+x^2}{x(1+x^2)}\mathrm{~d}x\\=&\int \frac{x+(1+x^2)}{x(1+x^2)}\mathrm{~d}x\\=&\int \frac{\mathrm{~d}x}{1+x^2}+\int \frac{\mathrm{~d}x}{x}\\=&\arctan x +\ln \mid x \mid +C \end{align}


例题:x41+x2 dx\int \frac{x^4}{1+x^2}\mathrm{~d}x

解:

\begin{align}&\int \frac{x^4}{1+x^2}\mathrm{~d}x\\=&\int \frac{x^4-1+1}{1+x^2}\mathrm{~d}x\\=&\int \frac{(x^2-1)(x^2+1)}{1+x^2}\mathrm{~d}x+\int \frac{1}{1+x^2}\mathrm{~d}x\\=&\int(x^2-1)\mathrm{~d}x+\arctan x\\=&\frac{x^3}{3}-x+\arctan x +C\end{align}


例题:tan2x dx\int \tan^2x\mathrm{~d}x

\begin{align}&\int \tan^2x \mathrm{~d}x \\=&\int(\sec^2x-1)\mathrm{~d}x\\=&\int \sec^2x\mathrm{~d}x-\int \mathrm{~d}x\\=&\tan x-x+C\end{align}

换元法

第一类换元法(凑微分法)

常用的凑微分公式
 dx=1a d(ax+b)(a0)\mathrm{~d}x=\frac{1}{a} \mathrm{~d}(a x+b)\quad (a \neq 0)
x dx=12 d(x2)x \mathrm{~d}x=\frac{1}{2} \mathrm{~d}\left(x^{2}\right)
1x dx=2 dx\frac{1}{\sqrt{x}} \mathrm{~d}x=2 \mathrm{~d}\sqrt{x}
1x2 dx= d(1x)\frac{1}{x^{2}} \mathrm{~d}x=-\mathrm{~d}\left(\frac{1}{x}\right)
sinx dx= d(cosx)\sin x \mathrm{~d}x =-\mathrm{~d}(\cos x)
cosx dx= dsinx\cos x \mathrm{~d}x=\mathrm{~d} \sin x
sec2x dx= dtanx\sec ^{2} x \mathrm{~d}x=\mathrm{~d}\tan x
csc2x dx= dcotx\csc ^{2} x \mathrm{~d}x=-\mathrm{~d}\cot x
11+x2 dx= darctanx\frac{1}{1+x^{2}} \mathrm{~d}x=\mathrm{~d}\arctan x
1x dx= dlnx\frac{1}{x} \mathrm{~d}x=\mathrm{~d} \ln x
ex dx= dexe^{x} \mathrm{~d}x=\mathrm{~d} e^{x}

当我们计算sinmxcosnx dx\int \sin^m x\cos^n x\mathrm{~d}x时,一般可考虑下列方法:

  1. m,nm,n中有一个为奇数时,分离一个sinx\sin x(或cosx\cos x)凑微分,再将被积表达式的其它部分表达为cosx\cos x( 或sinx\sin x) 的函数,转化为cosx\cos xsinx\sin x的多项式的积分来算。
  2. m,nm,n均为偶数时,可利用半角公式sin2x=1cos2x2\sin ^{2} x=\frac{1-\cos 2 x}{2}cos2x=1+cos2x2\cos ^{2} x=\frac{1+\cos 2 x}{2}降次化简后计算。

计算sinmxcosnxdx\int \sin m x \cos n x d xsinmxsinnxdx\int \sin m x \sin n x d xcosmxcosnxdx\int \cos m x \cos n x d x,若mnm \neq n时,可运用三角函数的积化和差公式:

\begin{align} &\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] \\ &\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)] \\ &\sin \alpha \sin \beta=-\frac{1}{2}[\cos (\alpha+\beta)-\cos (\alpha-\beta)] \end{align}

再分项积分

例题

例题:求2cos2x dx\int 2 \cos 2 x \mathrm{~d} x

解:被积函数中,cos2x\cos 2 x是一个由cos2x=cosu,u=2x\cos 2 x=\cos u, u=2 x复合而成的复合函数,常数因子恰好是中间变量uu的导数。因此,作变换u=2xu=2 x便有

\begin{align} \int 2 \cos 2 x \mathrm{~d} x & = \int \cos 2 x \cdot 2 \mathrm{~d} x = \int \cos 2 x \cdot(2 x)^{\prime} \mathrm{~d} x \\ &= \int \cos u \mathrm{~d} u=\sin u+C \end{align}

再以u=2xu=2x代入即可得到

\begin{align} \int 2\cos 2x \mathrm{~d} u = \sin 2x+C \end{align}


例题:求13+2x dx\int \frac{1}{3+2 x} \mathrm{~d} x

解:被积函数13+2x=1u,u=3+2x\frac{1}{3+2 x}=\frac{1}{u}, u=3+2 x。这里缺少 du dx=2\frac{\mathrm{~d} u}{\mathrm{~d} x}=2这样一个因子,但由于 du dx\frac{\mathrm{~d} u}{\mathrm{~d} x}是个常数,故可改变系数凑出这个因子:13+2x=1213+2x2=1213+2x(3+2x)\frac{1}{3+2 x}=\frac{1}{2} \cdot \frac{1}{3+2 x} \cdot 2=\frac{1}{2} \cdot \frac{1}{3+2 x}(3+2 x)^{\prime}

从而令u=3+2xu=3+2 x便有

\begin{align} \int \frac{1}{3+2 x} \mathrm{~d} x & =\int \frac{1}{2} \cdot \frac{1}{3+2 x}(3+2 x)^{\prime} \mathrm{~d} x=\int \frac{1}{2} \cdot \frac{1}{u} \mathrm{~d} u \\ & =\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln |3+2 x|+C \end{align}

一般地,对于积分f(ax+b) dx(a0)\int f(a x+b) \mathrm{~d} x \quad (a \neq 0),总可作变换u=ax+bu=a x+b,把它化为

f(ax+b) dx=1af(ax+b) d(ax+b)=1a[f(u) du]u=ax+b\int f(a x+b) \mathrm{~d} x=\int \frac{1}{a} f(a x+b) \mathrm{~d}(a x+b)=\frac{1}{a}\left[\int f(u) \mathrm{~d} u\right]_{u=a x+b}


例题:求x2(x+2)3 dx\int \frac{x^{2}}{(x+2)^{3}} \mathrm{~d} x

解:令u=x+2u=x+2,则x=u2, dx= dux=u-2, \mathrm{~d} x=\mathrm{~d} u于是

\begin{align} \int \frac{x^{2}}{(x+2)^{3}} \mathrm{~d} x & =\int \frac{(u-2)^{2}}{u^{3}} \mathrm{~d} u=\int\left(u^{2}-4 u+4\right) u^{-3} \mathrm{~d} u \\ & =\int\left(u^{-1}-4 u^{-2}+4 u^{-3}\right) \mathrm{~d} u \\ & =\ln |u|+4 u^{-1}-2 u^{-2}+C \\ & =\ln |x+2|+\frac{4}{x+2}-\frac{2}{(x+2)^{2}}+C \end{align}


例题:求2xex2 dx\int 2 x \mathrm{e}^{x^{2}} \mathrm{~d} x

解:被积函数中的一个因子为ex2=eu,u=x2\mathrm{e}^{x^{2}}=\mathrm{e}^{u}, u=x^{2},剩下的因子2x2 x恰好是中间变量u=x2u=x^{2}的导数,于是有

\begin{align}\int 2 x \mathrm{e}^{x^{2}} \mathrm{~d} x=\int \mathrm{e}^{x^{2}} \mathrm{~d}\left(x^{2}\right)=\int \mathrm{e}^{u} \mathrm{~d} u=\mathrm{e}^{u}+C=\mathrm{e}^{x^{2}}+C \end{align}


例题:求x1x2 dx\int x\sqrt{1-x^2} \mathrm{~d} x

解:设u=1x2u=1-x^{2},则 du=2x dx\mathrm{~d} u=-2 x \mathrm{~d} x,即12 du=x dx-\frac{1}{2} \mathrm{~d} u=x \mathrm{~d} x,因此

\begin{align} \int x \sqrt{1-x^{2}} \mathrm{~d} x & =\int u^{\frac{1}{2}} \cdot\left(-\frac{1}{2}\right) \mathrm{~d} u=-\frac{1}{2} \cdot\frac{3}{2}{u^{\frac{3}{2}}}+C \\ & =-\frac{1}{3} u^{\frac{3}{2}}+C=-\frac{1}{3}\left(1-x^{2}\right)^{\frac{3}{2}}+C . \end{align}


例题:求1a2+x2 dx(a0)\int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x \quad(a \neq 0)

解:

\begin{align}\int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x &=\int \frac{1}{a^{2}} \cdot \frac{1}{1+\left(\frac{x}{a}\right)^{2}} \mathrm{~d} x \\ &=\frac{1}{a} \int \frac{1}{1+\left(\frac{x}{a}\right)^{2}} \mathrm{~d} \frac{x}{a}=\frac{1}{a} \arctan \frac{x}{a}+C \end{align}

在上例中,我们实际上已经用了变量代换u=xau=\frac{x}{a},并在求出积分1a11+u2 du\frac{1}{a} \int \frac{1}{1+u^{2}} \mathrm{~d} u之 后,代回了原积分变量xx,只是没有把这些步骤写出来而已。


例题:求 dxa2x2(a>0)\int \frac{\mathrm{~d} x}{\sqrt{a^{2}-x^{2}}} \quad(a>0)

解:这是一道典型的反三角函数求导题目,我们可以考虑使用反三角函数来求解。

x=asintx=a\sin t,则有 dx=acost dt\mathrm{~d}x=a\cos t\mathrm{~d}t,代入原式中得到:

\begin{align}\int \frac{\mathrm{~d}x}{\sqrt{a^{2}-x^{2}}}=\int \frac{a\cos t}{\sqrt{a^{2}-a^{2}\sin^{2}t}}\mathrm{~d}t=\int \frac{\mathrm{~d}t}{\cos t}\end{align}

现在我们需要将积分式中的cost\cos t消去,我们可以使用三角恒等式cos2t=1sin2t\cos^{2}t=1-\sin^{2}t,将cost\cos t表示为sint\sin t的函数,得到:

\begin{align}\int \frac{\mathrm{~d}t}{\cos t}=\int \frac{\mathrm{~d}t}{\sqrt{1-\sin^{2}t}}=\arcsin \frac{x}{a}+C\end{align}

其中,CC为常数,因此,原式的解为arcsinxa+C\arcsin \frac{x}{a}+C


例题:求1x2a2 dx(a0)\int \frac{1}{x^{2}-a^{2}} \mathrm{~d} x \quad(a \neq 0)
解:由于1x2a2=12a(1xa1x+a)\frac{1}{x^{2}-a^{2}}=\frac{1}{2 a}\left(\frac{1}{x-a}-\frac{1}{x+a}\right)所以

\begin{align} \int \frac{1}{x^{2}-a^{2}} \mathrm{~d} x & =\frac{1}{2 a} \int\left(\frac{1}{x-a}-\frac{1}{x+a}\right) \mathrm{~d} x \\ & =\frac{1}{2 a}\left(\int \frac{1}{x-a} \mathrm{~d} x-\int \frac{1}{x+a} \mathrm{~d} x\right) \\ & =\frac{1}{2 a}\left[\int \frac{1}{x-a} \mathrm{~d}(x-a)-\int \frac{1}{x+a} \mathrm{~d}(x+a)\right]\\ &=\frac{1}{2 a}(\ln |x-a|-\ln |x+a|)+C =\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C \end{align}


例题:求 dxx(1+2lnx)\int \frac{\mathrm{~d} x}{x(1+2 \ln x)}

解:

\begin{align}\int \frac{\mathrm{~d} x}{x(1+2 \ln x)}&=\int \frac{\mathrm{~d}(\ln x)}{1+2 \ln x}\\&=\frac{1}{2} \int \frac{\mathrm{~d}(1+2 \ln x)}{1+2 \ln x}=\frac{1}{2} \ln |1+2 \ln x|+C\end{align}


例题:求ex3x dx\int \frac{\mathrm{e}^{\sqrt[3]{x}}}{\sqrt{x}} \mathrm{~d} x

解:由于 dx=12 dxx\mathrm{~d} \sqrt{x}=\frac{1}{2}\cdot \frac{\mathrm{~d} x}{\sqrt{x}},因此,

\begin{align}\int \frac{\mathrm{e}^{3 \sqrt{x}}}{\sqrt{x}} \mathrm{~d} x=2 \int \mathrm{e}^{\sqrt[3]{x}} \mathrm{~d} \sqrt{x}=\frac{2}{3} \int \mathrm{e}^{\sqrt[3]{x}} \mathrm{~d}(3 \sqrt{x})=\frac{2}{3} \mathrm{e}^{\sqrt[3]{x}}+C\end{align}


例题:求sin3x dx\int \sin ^{3} x \mathrm{~d} x

解:

\begin{align}\int \sin ^{3} x \mathrm{~d} x&=\int \sin ^{2} x \sin x \mathrm{~d} x=-\int\left(1-\cos ^{2} x\right) \mathrm{~d}(\cos x) \\&=-\cos x+\frac{1}{3} \cos ^{3} x+C \end{align}


例题:求sin2xcos5x dx\int \sin ^{2} x \cos ^{5} x \mathrm{~d} x

解:

\begin{align} \int \sin ^{2} x \cos ^{5} x \mathrm{~d} x & =\int \sin ^{2} x \cos ^{4} x \cos x \mathrm{~d} x \\ & =\int \sin ^{2} x\left(1-\sin ^{2} x\right)^{2} \mathrm{~d}(\sin x) \\ & =\int\left(\sin ^{2} x-2 \sin ^{4} x+\sin ^{6} x\right) \mathrm{~d}(\sin x) \\ & =\frac{1}{3} \sin ^{3} x-\frac{2}{5} \sin ^{5} x+\frac{1}{7} \sin ^{7} x+C \end{align}


cos3xcos2x dx\int \cos 3 x \cos 2 x \mathrm{~d} x

解:利用三角函数的积化和差公式cosAcosB=12[cos(AB)+cos(A+B)]\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)],得cos3xcos2x=12(cosx+cos5x)\cos 3 x \cos 2 x=\frac{1}{2}(\cos x+\cos 5 x)于是

\begin{align} \int \cos 3 x \cos 2 x \mathrm{~d} x & =\frac{1}{2} \int(\cos x+\cos 5 x) \mathrm{~d} x \\ & =\frac{1}{2}\left(\int \cos x \mathrm{~d} x+\frac{1}{5} \int \cos 5 x \mathrm{~d}(5 x)\right) \\ & =\frac{1}{2} \sin x+\frac{1}{10} \sin 5 x+C \end{align}

第二类换元法(去根号)

例题

例题:求11+x dx\int \frac{1}{1+\sqrt{x}}\mathrm{~d} x

解:令t=x,x=t2, dx=2t dtt=\sqrt{x},x=t^2,\mathrm{~d} x=2t\mathrm{~d} t

\begin{align}\int \frac{1}{1+\sqrt{x}}\mathrm{~d} x &=\int \frac{1}{1+t}2t\mathrm{~d} t\\&=2[\int 1\mathrm{~d} t-\int \frac{1}{1+t}\mathrm{~d} t]\\&=2[t-\ln\mid 1+t\mid]+C=2\sqrt{x}-2\ln(1+\sqrt{x})+C\end{align}


例题:求x1x2 dx\int x\sqrt{1-x^2}\mathrm{~d} x

解:令t=1x2,x2=1t, dt=2x dx, dx= dt2xt=1-x^2,x^2=1-t,\mathrm{~d} t=-2x\mathrm{~d} x,\mathrm{~d} x=-\frac{\mathrm{~d} t}{2x}

\begin{align}\int x\sqrt{1-x^2}\mathrm{~d} x &=\int x\sqrt{t}(\frac {\mathrm{~d} t}{2x})\\&=-\frac{1}{2}\int \sqrt{t}\mathrm{~d} t\\&=-\frac{1}{2}\cdot \frac{2}{3}t^{\frac{3}{2}}+C=-\frac{1}{3}t^{\frac{3}{2}}+C =-\frac{1}{3}(1-x^2)^{\frac{3}{2}}+C \end{align}


例题:求a2x2 dx(a>0)\int \sqrt{a^{2}-x^{2}} \mathrm{~d} x \quad(a>0)

解:求这个积分的困难在于有根式a2x2\sqrt{a^{2}-x^{2}},但我们可以利用三角公式sin2t+cos2t=1\sin ^{2} t+\cos ^{2} t=1
来化去根式。

x=asint,π2<t<π2x=a \sin t,-\frac{\pi}{2}<t<\frac{\pi}{2},则a2x2=a2a2sin2t=acost, dx=acost dt\sqrt{a^{2}-x^{2}}=\sqrt{a^{2}-a^{2} \sin ^{2} t}=a \cos t, \mathrm{~d} x=a \cos t \mathrm{~d} t,于是 根式化成了三角式,所求积分化为

a2x2 dx=acostacost dt=a2cos2t dt\int \sqrt{a^{2}-x^{2}} \mathrm{~d} x=\int a \cos t \cdot a \cos t \mathrm{~d} t=a^{2} \int \cos ^{2} t \mathrm{~d} t

由于cos2x dx=x2+sin2x4+C\int \cos ^{2} x \mathrm{~d} x=\frac{x}{2}+\frac{\sin 2x}{4}+C得到下面公式

a2x2 dx=a2(t2+sin2t4)+C=a22t+a22sintcost+C\int \sqrt{a^{2}-x^{2}} \mathrm{~d} x=a^{2}\left(\frac{t}{2}+\frac{\sin 2 t}{4}\right)+C=\frac{a^{2}}{2} t+\frac{a^{2}}{2} \sin t \cos t+C

由于x=asint,π2<t<π2x=a \sin t,-\frac{\pi}{2}<t<\frac{\pi}{2}所以

\begin{align} &t=\arcsin \frac{x}{a}\\ &\cos t=\sqrt{1-\sin ^{2} t}=\sqrt{1-\left(\frac{x}{a}\right)^{2}}=\frac{\sqrt{a^{2}-x^{2}}}{a} \end{align}

于是所求积分为

a2x2 dx=a22arcsinxa+12xa2x2+C\int \sqrt{a^{2}-x^{2}} \mathrm{~d} x=\frac{a^{2}}{2} \arcsin \frac{x}{a}+\frac{1}{2} x \sqrt{a^{2}-x^{2}}+C

分部积分法

设函数u=u(x)u=u(x)v=v(x)v=v(x)具有连续导数,它们的乘积的导数公式为:

\begin{align}\int u\mathrm{~d} v=uv-\int v \mathrm{~d} u\end{align}

例题

例题:求xcosx dx\int x\cos x\mathrm{~d}x

如果设u=x, dv=cosx dxu=x,\mathrm{~d}v=\cos x\mathrm{~d}x,则 du= dx,v=sinx\mathrm{~d}u=\mathrm{~d}x,v=\sin x,代入分部积分公式得

\begin{align}\int x\cos x \mathrm{~d}x=x\sin x-\int \sin x\mathrm{~d}x\end{align}

由于v du=sinx dx\int v\mathrm{~d}u=\int \sin x \mathrm{~d}x容易积出,所以

\begin{align}\int x \cos x\mathrm{~d}x=x\sin x+\cos x+C\end{align}


例题:求xex dx\int x \mathrm{e}^{x} \mathrm{~d} x

解:设u=x, dv=ex dxu=x, \mathrm{~d} v=\mathrm{e}^{x} \mathrm{~d} x,则du=dx,v=ex\mathrm{d} u=\mathrm{d} x, v=\mathrm{e}^{x}。于是

\begin{align}\int x \mathrm{e}^{x} \mathrm{~d} x=x \mathrm{e}^{x}-\int \mathrm{e}^{x} \mathrm{~d} x=x \mathrm{e}^{x}-\mathrm{e}^{x}+C=\mathrm{e}^{x}(x-1)+C\end{align}

如果利用分部积分的公司的话,得到如下过程更简单

\begin{align}\int x \mathrm{e}^{x} \mathrm{~d} x=\int x \mathrm{~d}\left(\mathrm{e}^{x}\right)=x \mathrm{e}^{x}-\int \mathrm{e}^{x} \mathrm{~d} x \\ =x \mathrm{e}^{x}-\mathrm{e}^{x}+C=(x-1) \mathrm{e}^{x}+C \end{align}


例题:求x2ex dx\int x^{2} \mathrm{e}^{x} \mathrm{~d} x

解:设u=x2, dv=ex dx=d(ex)u=x^{2}, \mathrm{~d} v=\mathrm{e}^{x} \mathrm{~d} x=\mathrm{d}\left(\mathrm{e}^{x}\right),则

x2ex dx=x2 d(ex)=x2exex d(x2)=x2ex2xex dx\int x^{2} \mathrm{e}^{x} \mathrm{~d} x=\int x^{2} \mathrm{~d}\left(\mathrm{e}^{x}\right)=x^{2} \mathrm{e}^{x}-\int \mathrm{e}^{x} \mathrm{~d}\left(x^{2}\right)=x^{2} \mathrm{e}^{x}-2 \int x \mathrm{e}^{x} \mathrm{~d} x

这里xex dx\int x \mathrm{e}^{x} \mathrm{~d} xx2ex dx\int x^{2} \mathrm{e}^{x} \mathrm{~d} x容易积出,因为被积函数中xx的幂次前者比后者降低了一次。由上一题可知,对xex dx\int x \mathrm{e}^{x} \mathrm{~d} x再使用一次分部积分法就可以了。于是

\begin{align} \int x^{2} \mathrm{e}^{x} \mathrm{~d} x & =x^{2} \mathrm{e}^{x}-2 \int x \mathrm{e}^{x} \mathrm{~d} x=x^{2} \mathrm{e}^{x}-2 \int x \mathrm{~d}\left(\mathrm{e}^{x}\right) \\ & =x^{2} \mathrm{e}^{x}-2\left(x \mathrm{e}^{x}-\mathrm{e}^{x}\right)+C=\mathrm{e}^{x}\left(x^{2}-2 x+2\right)+C \end{align}

总结上面三个例子可以知道,如果被积函数是幂函数和正 (余) 弦函数或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数为uu。这样用一 次分部积分法就可以使幂函数的幕次降低一次。这里假定幕指数是正整数。


例题:求xlnx dx\int x \ln x \mathrm{~d} x

解:设u=lnx, dv=x dxu=\ln x, \mathrm{~d} v=x \mathrm{~d} x,则

\begin{align} \int x \ln x \mathrm{~d} x & =\int \ln x \mathrm{~d} \frac{x^{2}}{2}=\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \mathrm{~d}(\ln x) \\ & =\frac{x^{2}}{2} \ln x-\frac{1}{2} \int x \mathrm{~d} x=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+C \end{align}


例题:求arccosx dx\int \arccos x \mathrm{~d} x

解:设u=arccosx, dv=dxu=\arccos x, \mathrm{~d} v=\mathrm{d} x,则

\begin{align} \int \arccos x \mathrm{~d} x & =x \arccos x-\int x \mathrm{~d}(\arccos x) \\ & =x \arccos x+\int \frac{x}{\sqrt{1-x^{2}}} \mathrm{~d} x \\ & =x \arccos x-\frac{1}{2} \int \frac{1}{\left(1-x^{2}\right)^{\frac{1}{2}}} \mathrm{~d}\left(1-x^{2}\right) \\ & =x \arccos x-\sqrt{1-x^{2}}+C \end{align}